University of Pune

S.Y.B.Sc. Environmental Science Revised Syllabus 2020-21 Course Design

Semester	Paper	Course	Course Title	Credits		Marks Dis	tribution	
		code			Internal	University	Subtotal	Total
Ι	Ι	EVS – 231	Ecology & Ecosystem	02	15	35	50	150
1	II	EVS – 232	Natural Resource Conservation and Management	02	15	35	50	150
	III	EVS – 233	Practical Course Based on EVS - 231 & EVS - 232	02	15	35	50	
II	Ι	EVS-241	Biological Diversity & its Conservation	02	15	35	50	150
11	II	EVS-242	Environmental Pollution Control Technology	02	15	35	50	150
	III	EVS-243	Practical Course Based on EVS - 241 & EVS - 242	02	15	35	50	
				Total = 12				300

<u>Semester – I, Paper – I, EVS – 231</u>

Ecology & Ecosystem

(Total Lectures- 40)

	Name of the	Content	Lectures
<u>No.</u> 1.	<u>Unit</u> Ecology	 Introduction & Interdisciplinary nature of Ecology. Levels of Organisation – a) Biological / Ecological Spectrum. b) Ecological Hierarchy by Barett et al. Ecological Classification based on – a) Taxonomic Affinity (From Kingdom to Species Level Ecology). b) Habitat Types (Terrestrial & Aquatic Ecology). c) Levels of Organisation (Autecology & Synecology – Population, Community, Biome & Ecosystem Ecology) 	08
2.	Ecosystem Structure & Function – Energy Flow	 Concept of the Ecosystem. Macro & Micro-ecosystemsetc. Ecosystem Structure – Abiotic & Biotic Components. Ecosystem Function : Functional attributes- a) Food Chain – Grazing & Detritus. b) Food Web & Ecosystem Stability c) Ecological Energetics – i) Energy Input. ii) Energy Flow – Single Channel & Y shaped models. d) Productivity of Ecosystem – i) Primary Production – GPP & NPP. ii) Secondary Production. iii) Standing Crop (Biomass). e) Ecological Pyramids – of Number, Biomass & Energy with examples 	08
3.	Ecosystem Function : Nutrient Cycling	 Concept of – a) Macro & Micro-nutrients, deficiency syndrome, Functions b) Nutrient Cycling Biogeochemical Cycles – Gaseous Cycles – Hydrological, Carbon & Nitrogen Cycles. Sedimentary Cycles – Phosphorus & Sulphur Cycles. Human Impact on Biogeochemical Cycles. Ecosystem Nutrient Cycling Model – Intra-system Cycling & Extra-system Transfers. a) Nutrient Inputs. b) Biotic Accumulation of Nutrient. c) Nutrient Outputs. 	08

4.	Population	Introduction & Basic Concepts.	08
	Ecology	Population Characteristics –	
		a) Size & Density.	
		b) Dispersion – Random, Aggregate & Uniform.	
		c) Natality (Potential & Realised).	
		d) Fecundity	
		e) Mortality (Potential & Realised).	
		f) Survivorship Curves.	
		g) Age & Sex Structure.	
		h) Life Table and Viability analysis	
		The Concept of Carrying Capacity.	
		Population Growth –	
		a) Growth Curves – Exponential & Logistic.	
		b) Population Fluctuation.	
		c) Biotic Potential & Environmental Resistance.	
5.	Community	Characteristics of Community - Species Diversity, Growth	08
	Ecology	form & Structure, Dominance, Succession, Trophic Structure,	
	and	Ecological Niche, Ecotone & Edge Effect.	
	Succession	Characters used in Community Structure-	
		a) Analytical Characters –	
		i) Quantitative.	
		ii) Qualitative.	
		b) Synthetic Characters.	
		Inter-specific & Intra-specific Relationships.	
		• Causes of Succession.	
		• Basic Types – Primary, Secondary, Autogenic, Allogenicetc.	
		Mechanism of Succession –	
		a) Nudation.	
		b) Invasion.	
		c) Competition, Co-action & Reaction.	
		d) Stabilisation (Climax).	
		• Models of succession –	
		a) Hydrosere.	
		b) Lithosere.	

Semester – I , Paper – II, EVS – 232

<u>Natural Resources & their Management</u> (Total Lectures- 40)

Unit No.	Name of the Unit	Content	Lectures
1.	Resources	 Meaning and Definition Classification of Resources On the basis of Origin: Biotic & Abiotic On the basis of recovery rate: Renewable and Non Renewable Natural and Artificial Resources Material and Energy Resources Importance and Scope of Resources Nature of Resources : Regenerative and Assimilative Capacity of Earth Man's Interaction with Natural Resources: An important resource A waste sink Cultural Significance 	08
2.	Forest and Mineral Resources	 A. Forest Resources : Function of Forest : Protective, Productive, Regulative and Accessory Importance of Forest : Ecological and Economical Human Interaction with Forest : Overexploitation, Deforestation (Causes and Effects) Forest Management in India—JFM, EDP, Protected Areas Case studies on Timber extraction, Dam construction and its effect on tribal people B. Mineral Resources Origin of Mineral Resources with examples Need of Mineral Resources Effects of Mining on Ecosystem with case studies. Conservation of Mineral resources and its importance 	08
3.	Food Resources	 World Food Problems: a) Increasing World Food Demand. b) Nutritional deficiency in food. c) Food Distribution. The Green Revolution in India- Concept, Its Impacts in India. Introduction of Hybrid Varieties-HYV and Genetically Modified Crops. Effects of Modern Agriculture technologies Genetically Modified Crops & Regulations in India Fertilizer-Pesticide Problems –NPK Fertilizers 	08

4.	Water	• Use and over-utilization of surface and ground water,	08
	Resources	Under-ground water pollution	
		• Water Crisis the reasons	
		Conflicts over waterWorld and India	
		Conservation & Management	
		a) Traditional Methods.	
		b) Rain-water Harvesting & Ground Water Recharge.	
		c) Watershed Management– the concept.	
		d) Flood and flood plain management	
5.	Land	Traditional & Modern Agricultural Systems	08
	Resource	Major causes of soil degradation:	
		Soil erosion, Pollution, Use of fertilisers, pesticides, heavy metals,	
		Plastic pollution	
		Consequences of soil erosion	
		a) Decline of soil fertility	
		b) Water logging	
		c) Salinity	
		d) Shifting / jhum cultivation	
		Soil conservation methods	
		Sustainable Agriculture Methods	

<u>Semester – II, Paper – I, EVS -241,</u>

<u>Biological Diversity & its Conservation</u> (Total Lectures- 40)

Unit No.	Name of the Unit	Content	Lectures
1.	Biological	Biological Diversity	08
	Diversity –	• The Concept, Definition	
	Ecosystem	• Levels – Ecosystem, Species & Genetic.	
	Diversity	Methods of assessment of Biological diversity	
		Ecosystem Diversity	
		• Classification of Ecosystem –	
		a) Udvardy's Classification.	
		b) Bailey's Classification.	
		c) Olsen's Classification.	
		d) Holdridge's Classification.	
		• Major Ecosystem types of India with their physical &	
		biological characteristics.	
		• Major Ecosystem types of the World with their physical	
		& biological characteristics.	
		Importance of Ecosystem in maintaining Ecological balance	
2.	Species	a) Species Diversity at Local , National and International Level	08
4.	Diversity	b) Special features and Latest estimates for major groups of Plants,	00
	Diversity	Animals & Microbes.	
		 Measuring Species Diversity – Species Richness, 	
		Species Abundance and Species Evenness.	
		 Factors affecting global distribution of Species Richness – 	
		Latitudinal, Altitudinal, Rainfall gradients, temperature	
		etc.	
		• Endemism –	
		a) The Concept.	
		b) Types with Examples.	
		c) Endemism in India.	
		• Centers of Diversity –	
		a) The Concept.	
		b) Centers of Diversity : Analyses at Global Level –	
		Concept of hotspot	
		i) Myer's Hot-spots.	
		ii) Mega-diversity Centers / Countries.	
		c) Western Ghat as a Hot-spot.	
		d) India as a Mega-diversity Country.	
3.	Genetic	Meaning & Introduction to Genetic Variations in Species.	08
	Diversity	• Nature & Origin of Genetic Variations.	
		• Factors affecting Genetic Diversity.	
		• Darwin's theory of Evolution and Lamarck's theory of Natural	
		Selection	
		Measurement of Genetic Diversity –	
		a) Based on DNA & Chromosomes.	
		b) Molecular Marker Techniques.	
		Transgenic Organisms.	
		Diversity in Domesticated Species –	

			1
		a) Variations since the first domestication to the present.	
		Land Races, Advanced Cultivars, Wild Relatives of Cultivated	
		Plants & Feral Plants.	
4.	Significance	(Significances)	08
	& Threat to	• Ecological Significances – Contribution of Biodiversity to various	
	Biodiversity	Eco- Services.	
		• Non Ecological Significances – Nutritional, Medicinal, Aesthetic,	
		Cultural, Commercial Values etc.	
		• Optional Values, Use of microorganism in remediation of	
		pollution	
		(Threats)	
		• Threats with suitable Examples –	
		÷	
		a) Large Scale Dev. Projects – Habitat Destruction &	
		Fragmentation.	
		b) Changing Agri. & Forestry Practices.	
		c) Invasion by Introduced Species.	
		d) Over-exploitation.	
		e) Environment Pollution.	
		f) Global Climate Change.	
		g) Loss of Traditional Knowledge.	
		h) Nature of Legal & Mgmt. System – Human Wildlife Conflict.	
		i) Genetically Modified Organismsetc.	
5.	Biodiversity	Conservation Methods – In-situ & Ex-situ methods	08
	Conservation	with Example.	
		National Conservation Efforts –	
		a) The laws – Environment Protection Act, Forest Act, Wildlife	
		Act, Biodiversity Act 2002	
		b) Involving People's Participation – NBSAP, PBR	
		c) Involving Community Participation – JFM, EDP	
		d) People's Movement – Silent Valley Movement, Beej Bachao	
		Andolan	
		International Conservation Efforts –	
		a) IUCN – The World Conservation Union.	
		b) CBD.	
		c) CITES.	
		 Traditional Methods of Conservation – Sacred Groves / 	
		Ponds / Species, Periodic restrictions on resource harvesting	
		etc.	
		Need & Awareness.	
		• Inclu & Awareness.	

<u>Semester – II, Paper – II, EVS – 242</u>

Environmental Pollution Control Technology

(Total Lectures- 40)

Unit No.	Name of Unit	Content	Lectures
1	Air Quality Parameters and Monitoring	 Air Quality Monitoring National standards for ambient air quality by WHO Site and Parameter selection, Air Sampling Techniques Monitoring of important ambient air components such as Particulate matter (PM) of 10 micron or less in size and 2.5 micron and less in size, Oxides of Sulfur, Nitrogen, Carbon monoxide Methods of analysis of SOx , NOx Monitoring tools/instruments used for the same and its work principle, Stack gases monitoring technique 	08
2	Water Quality Monitoring	 Plume behaviour Purpose/objectives of monitoring Water Quality Monitoring Protocol Collection of sample (types of sample, chain of custody, sampling method, number of samples, sample containers, sample volume, etc.) Sample preservation, handling & storage guidelines/criteria Water quality monitoring on field test parameters, off-field test parameters Waste Water Treatment: a) Primary Treatment – Screening, Grit removal, Sedimentation b) Secondary Treatment - Aerobic Method-	08
3	Soil Quality Monitoring	 Objectives of soil monitoring/testing Sampling and sample units; sample number, frequency and timing; Sampling methodology a. Site selection b. Infield sampling technique c. Describing the soil profile d. Site description e. Setting a transect instruments / Equipment used 	08

		Guidelines for handling and storage of samples	
		Physiochemical and Biological parameters	
		Biological Method to control soil pollution	
		a) To reduce dependency on chemicals –	
		Use of Bio fertilizers & Bio pesticides, Conservational	
		Tillage, Mixed Cropping, Crop rotation, Biological Pest	
		Mgmt., Organic Farming	
		b) Bio / Phyto-remediation of contaminated sites.	
		Soil carbon Flux	
4	Forest Monitoring	Classification of forests	08
		Measurement of individual trees:	
		a. Measurement of diameter and girth of trees	
		b. Measurement of heights of trees	
		c. Measurement of form of trees	
		d. Measurement of volume of felled trees	
		e. Measurement of volume of standing trees	
		f. Determination of age of trees	
		Forest inventory	
		• Kinds of sampling , sampling units, sampling intensity	
5.	Noise Quality	Noise and Vibration Monitoring	08
	Parameters	Measuring techniques for noise & vibration	
		Noise monitoring methods	
		• The Basic Noise Unit; Lmax, SEL, Leq(h), Ldn, 24-Hour	
		Exposure from All Events	
		Noise Control Techniques- Sound Insulation, Sound	
		Absorption, Vibration Damping and Isolation	
		Noise Control at Source—	
		a) Selection & Maintenance of machines.	
		b) Control over vibrations.	
		c) Installation of barriers / enclosures.	
		d) Using protective equipment	
		e) Noise proof walls	

Semester I, Paper-III Practical Course Based on EVS -231 & EVS- 232.

Sr. No.	Description	Practical Type	Practical Sessions
1.	Measurement of Primary Productivity of grassland by Harvest Method.	Field + Laboratory.	01
2.	Estimation of Total Chlorophyll from plants in Clean & Polluted Environment.	Laboratory.	01
3.	Study of grassland vegetation by List Count Quadrat Method to determine the Frequency, Density & Abundance.	Field + Laboratory	01
4.	Determination of Frequency & Abundance of species across terrestrial – aquatic transitional zone, by Line Transect Method.	Field + Laboratory	01
5.	Determination of Density of species across terrestrial – aquatic transitional zone by Belt Transect Method.	Field + Laboratory	01
6.	Field visit to study Watershed Mgmt. Techniques.	Visit.	01
7.	Visit to Nature Interpretation / Information Centre.	Visit.	01
8.	Visit to National Park / Wildlife Sanctuary to study Wildlife & various Inter-specific & Intra- specific Relations.	Visit.	<u>≥</u> 01 Day
9.	Continuation of the use of Social Media for e- networking & dissemination of ideas on Environmental Issues Pertaining to the Course.		<u>≥</u> 02
10.	Identification of advanced cultivars in the Local market	Visit.	01
11.	Field visit to study Rain water Harvesting technique	Visit.	01
12.	quadrates for vegetation	Field + Laboratory	01
	Determination of Shannon Diversity Index of a vegetation (Data sheet)	Laboratory.	01
14.	Determination of Simpson Diversity Index of a vegetation (Data sheet)	Laboratory.	01
15.	Visit to Soil Survey Department.	Visit.	01
16.	Study of Soil sampling techniques	Visit.	01

<u>Semester II, Paper-III</u>

Practical Course Based on EVS -241 & EVS - 242.

Sr. No.	Description	Practical Type	Practical Sessions
1.	Sampling of Air by High Volume Sampler	Field + Laboratory	01
2.	Determination of Optimum Dose of Alum (Coagulant) required for water.	Laboratory.	01
3.	Determination of Turbidity of water. (Turbidimeter / Nephelometer)	Laboratory.	01
4.	Determination of Residual Chlorine from treated water.	Laboratory.	01
5.	Determination of Dissolved Oxygen in water by Winkler's method	Laboratory.	01
6.	Determination of Nitrate from water (Calorimeter)	Laboratory.	01
7.	Determination of Phosphate from water. (Colorimeter)	Laboratory.	01
8.	Determination of Soluble Salts from Soil.	Laboratory.	01
9.	Determination of Available Nitrogen from soil.	Laboratory.	01
	Study of Water Sampling and Preservation techniques	Field + Laboratory	01
	Measurement of sounds by DB meter / SLM in silent, industrial, residential and commercial zones and Analysis	Field + Laboratory	01
12.	Estimation of AGB, BGB and Carbon from sampling of trees	Field + Laboratory	01
13.	Determination of Lime required for Acidic soil	Laboratory	01
14.	Estimation of Productivity of Lake using DO method	Field + Laboratory	02
15.	Estimation of NOx content of given samples	Laboratory.	01
16.	Estimation of SOx content of given samples	Laboratory.	01

<u>Reference Books</u>

- Understanding Environment; Chokkar K. B., Pandya M. & Raghunathan M.; Centre for Environment Education; Sage Publication, New Delhi.
- An Advanced Textbook on Biodiversity Principles & Practice; Krishnamurthy K.V.; Oxford & IBH Publishing Co. Pvt. Ltd.; New Delhi.
- Ecology Principles & Applications; Chapman J. L. & Reiss M. J.; Cambridge University Press.
- Fundamentals of Ecology; Odum P.E.; Natraj Publishers; Dehradun; 3 Edt..
- Ecology, Environment & Resource Conservation; Singh J.S., Singh S.P. & Gupta S.R.; Annamaya Publishers; New Delhi.
- Ecology & Environment; Sharma P.D.; Rastogi Publication; Meerut; 11 Rev. Edt..
- Environment Science; Tyler M.G.; Wadsworth Publishing Co.; 1997.
- Perspective in Environmental Studies; Kaushik & Kaushik; New Age International Pvt. Ltd. Publishers.
- Environmental Science; Santra S.C.; New Central Book Agency (P) Ltd.; 2 Edt..
- Environmental Chemistry, Dey A. K.; New Age International Publishers; 6 Edt..
- Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 1989.
- Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.
- Pollution Management; Agarwal S.K.
- Environmental Science; Daniel Chiras.
- Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy.
- Manual for Field Ecology; Mishra R.
- Handbook of Methods in Environmental Studies Vol-I ⅈ Mailti S.K.; ABD Publishers; Jaipur.
- Physico-Chemical Examination of Water, Sewage & Industrial Effluents; Manivasakam N.; Pragati Prakashan; Meerut; 1984.
- Chemical & Biological Methods for Water Pollution Studies; Trivedi R.K. & Goel P.K.; Environmental Publications; Karad; 1986.
- Instrumental Methods of Analysis; Willard; cbpspd; 7 Edt..
- Pollution Management; Agarwal S.K.
- Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- Advanced Air and Noise Pollution Control L.K Wang & N.C Pereira
- Textbook of Noise Pollution & Its Control S.C. Bhatia
- Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.
- Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 1989